
RAPPORT FRA
HAVFORSKNINGEN
NR. 2021-25

FISKERIAKUSTIKK OG
AKUSTISK
MÅLKLASSIFISERING
Rapport frå COGMAR/CRIMAC arbeidsmøte om
maskinlæring og fiskeriakustikk



Rapportserie:
Rapport fra havforskningen 
ISSN:1893-4536

År - Nr.:
2021-25

Dato:
15.06.2021

Forfatter(e):
(HI), Lars Nonboe Andersen (Kongsberg Maritime), Olav Brautaset
(Norsk Regnesentral), Changkyu Choi (UiT), Inge Kristian Eliassen
(NORCE), Yngve Heggelund (NORCE), Arne Johan Hestnes (Kongsberg
Maritime), (HI), Håkon Osland (UiB), Alba Ordonez (Norsk
Regnesentral), Ruben Patel (CODELAB), Geir Pedersen, (HI), Tom Van
Engeland (IMR) og Sindre Vatnehol (HI)

Godkjent av: Forskningsdirektør(er): Geir Huse Programleder(e): Frode
Vikebø

Distribusjon:
Åpen

Prosjektnr:
COGMAR, CRIMAC

Program:
Marine prosesser og menneskelig
påvirkning

Forskningsgruppe(r):
Bunnfisk 
Pelagisk fisk 
Akustikk og observasjonsmetodikk

Antall sider:
27

Tittel (norsk og engelsk):
Fiskeriakustikk og akustisk målklassifisering
Fisheries acoustics and Acoustic Target Classification

Undertittel (norsk og engelsk):
Rapport frå COGMAR/CRIMAC arbeidsmøte om maskinlæring og fiskeriakustikk
Report from the COGMAR/CRIMAC workshop on machine learning methods in fisheries acoustics



Sammendrag (norsk):
This report documents a workshop organised by the COGMAR and CRIMAC projects. The objective of the
workshop was twofold. The first objective was to give an overview of ongoing work using machine learning for
Acoustic Target Classification (ATC). Machine learning methods, and in particular deep learning models, are
currently being used across a range of different fields, including ATC. The objective was to give an overview of the
status of the work. The second objective was to familiarise participants with machine learning background to
fisheries acoustics and to discuss a way forward towards a standard framework for sharing data and code. This
includes data standards, standard processing steps and algorithms for efficient access to data for machine learning
frameworks. The results from the discussion contributes to the process in ICES for developing a community
standard for fisheries acoustics data.

Sammendrag (engelsk):
Rapporten dokumentere eit arbeidsmøte I COGMAR og CRIMAC prosjekta om automatisk målklassifisering av
akustiske data. Føremålet med arbeidsgruppa var todelt. I den første bolken gav partnarane ei oversikt over kva dei
held på med innan fagfeltet. Først gav vi ei oversikt over bruk av maskinlæring på automatisk målklassifisering av
akustikkdata. Maskinlæringsmetodar, og spesielt djuplæring, er i bruk på mange tilsvarande felt, i tillegg til
identifisering av mål frå fiskeriakustikk. Den andre føremålet var å gje deltakarar med maskinlæringsbakgrunn ei
innføring i fiskeriakustikk og diskutera korleis vi kan etablera data standardar for å kunne effektivt samarbeida. Dette
inkluderer datastandardarar, standard prosesseringssteg og algoritmar for effektiv tilgang til data for maskinlæring
Resultatet frå diskusjonane vart delt med arbeidet i ICES mot ein data standard innan fiskeriakustikkmiljøet.
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1 - Workshop format
The workshop was organized in two steps, were the first part was a mini conference on the use of machine
learning methods on fisheries acoustics methods from the partners in the COGMAR and CRIMAC projects. The
second part was a hands-on training session/hackaton on understanding, reading, and processing acoustic raw
data.

The mini conference was a series of presentations of the approaches the different partners and institutions have
used on fisheries acoustics data. The talks ranged from the recent advancement on using machine learning
(ML) methods to the need for a framework for cooperation, data and algorithm sharing. The latter is linked to the
ongoing efforts in ICES to develop a standard for acoustic data, and efficient connection to deep learning
frameworks like Keras, Tensorflow and Pytorch, among others. The mini conference was held online November
1st, 2020.

 

The hackaton was organized December 7th- 11th 2020. The hackaton was a combination of small meetings,
working in groups and training sessions on various aspects of reading, understanding and processing acoustic
raw data.
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2 - The mini conference
The mini conference was a series of presentations of the approaches the different partners and institutions have
used on fisheries acoustics data. The talks ranged from the recent advancement on using ML methods to the
need for a framework for cooperation, data and algorithm sharing. The latter is linked to the ongoing efforts in
ICES to develop a standard for acoustic data, and efficient connection to deep learning frameworks like Keras,
Tensorflow and pytorch, among others.

2.1 - LSSS and initial krill school detection by deep learning
Inge Eliassen and Junyong You gave a presentation of the Large Scale Survey System (LSSS) and presented
initial work on using deep learning methods on krill school detections. They used screen shot images from
LSSS as input to a U-net algorithm and Mask-RCNN and were experimenting with a RetinaNet architecture (
Figure 1 ).
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Figure 1. Krill school detection using a deep learning model. (a) Screenshot from LSSS, (b) manual annotation of krill schools, and (c)
Mask-RCNN detection.

 

2.2 - Supervised learning and adding additional information to the classifier
Olav Brautaset presented the work on using the U-net algorithm on the sand eel data (Brautaset et al. , 2020).
The continuation of this work includes addressing variations in ping rate, falsely detected high energy pixels,
and how to include auxiliary information to the network ( Figure 2 ). All these approaches show an improved
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performance of the network.

 

Figure 2. Including auxiliary information to the network for improved training and prediction.

 

2.3 - Semi-supervised deep learning approach using self-supervision
Changkyu Choi presented a semi supervised approach for classifying the sand eel data. He showed that a
similar performance could be attained with only a subset of the labels. The idea is that all the data is used to
learn a unsupervised representation for the data, and the labels are then combined in subsequent steps ( Figure
3 ).
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Figure 3. A semi supervised approach for classifying sand eel.

 

2.4 - Unsupervised deep learning
Håkon Osland is working on unsupervised methods to cluster acoustic data into different classes. this approach
is valuable for learning the structure and representation of large amounts of data. He has been experimenting
with generative adversarial networks for establishing a lower dimensional representation of the data.

2.5 - Clustering drop sonde data
Tom Van Engeland is working on fine detail data from a drop sonde system. He is working on clustering
techniques to establish different acoustic classes from the data ( Figure 4 ), and he is interested in whether the
diversity of these classes can be used to address biodiversity in the area.
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Figure 4. Different classes emerging when clustering the drop sonde data.

 

2.6 - IMR estimation workflow
Sindre Vatnehol and Ibrahim Umar presented the IMR data processing pipeline for fisheries advice. They
emphasized the need to independent quality metrics on several levels, both on assessment results, survey
indices, as well as finer scaled metrics. These metrics can be used for testing the sensitivity to different
algorithms and parameters on and are useful for evaluating the different approaches in practice. They also
emphasized the need for a data standard for the classification mask and the pre-processed data.

2.7 - Kongsberg processing pipeline
Arne Johan Hestnes presented the survey system that Kongsberg have been developing on top of their Kognifai
platforms. We intent to use this platform for testing different classification algorithms. The platform supports
docker images, and we intend to use that for testing and deploying different processing algorithms.

2.8 - General discussion
The work so far has been focused on traditional multiple frequency approaches using historical data. How to
transfer this to broad banded data is an important step in the way forward, and the next steps will be to transfer
that knowledge to cases where we start exploring the broad band spectrums.

The work so far has focused mostly on the Sand Eel survey since that have been made available for the
participants, but it is important to move ahead with other surveys to ensure that we develop methods that are
robust and scalable. The sand eel survey is also different to several other surveys in the sense that every
school is manually labelled, whereas it is more common to allocate backscatter over a distance in other
surveys. It is important that we include these other surveys to ensure that we develop methods that are general
enough to tackle a broad range of problems.

The work presented have mainly focused on pixel based or patch-based predictions. This is the common
approach for image analysis, but for acoustic trawl surveys, the backscatter itself is the key parameter. This
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means that low backscatter values are less important to get right than high backscatter regions. Weighing high
intensity background images, like presented by Olav Brautaset, is an important step to reduce the overall error.

Different diagnostic tools need to be developed. These tools range from directly evaluating pixel wise
annotations to the test set, via integrated backscatter over a distance, e.g. a transect, evaluating the
performance metrics on the overall survey, and to effects on the assessment model results. These approaches
can be used both for training, validation and testing. The latter is more relevant for testing since it requires larger
computing resources. Sindre Vatnehol presented a few alternatives on how to move this forward, including
different metrics to evaluate the consistency of a survey series.

The uncertainty in the acoustic target classification is not commonly included in survey estimates, but this
constitutes an important source of uncertainty in the global estimate. The sensitivity to different classifications
practices or algorithms can be analyzed and we can analyze the error propagation based on these
uncertainties. This will be an important input to the survey estimation step, and the following assessment
models.

2.9 - Discussion on collaboration and data standards
To make data available for the consortia and to ensure efficient collaborations across partners, the first step is to
refine standards for exchanging data and algorithms between different computing modules. To steer the efforts,
the existing pipeline will be used as a prototype. This pipeline consists of the manual classification from LSSS (
Figure 1 ), the preprocessing and classification pipeline developed by IMR and NR (Brautaset et al. , 2020), the
IMR data processing pipeline, and the Kongsberg processing and scheduling platform.

The data standard should contribute to the efforts of the ICES working group on Fisheries Acoustics, Science
and Technology (WGFAST) in developing a common data convention , and details on how to contribute can be
found there.

As a part of the ICES convention, a convention for interpretation masks is required. This information should
contain the manual annotations and should cover content similar to the LSSS work files and the Echoview EV
files. Code to read the LSSS work files exist . A review of different data models has been performed , and a test
implementation exist . There is also code that run the predictions from the U-net algorithm, write the test version
of the masks, and wrap it up in a docker image . We need to test this and see if it is sufficient for our purposes.
The goal is that everyone that creates models for acoustic target classification should write this format to allow
for testing the predictions through the Kongsberg system and in the IMR processing pipeline.

The interpretation mask is used in combination with (preprocessed) raw data to generate the integrated
backscatter. These data have an established data standard that we need to adhere to. Both Echoview and
LSSS supports this standard, and it is the input to the IMR processing pipeline. We have code that can read the
proposed interpretation mask convention and post it to LSSS, and then use the LSSS infrastructure to generate
the output. The process is rather slow when applied to a full survey, and alternatives are to write the work files
or to generate a standalone light weight integrator.

Python is one of the most commonly used programming languages within machine learning, and shared data
access code base for accessing acoustic data and annotations are needed. The python libraries accessing the
data formats should be cloud friendly, and the internal representation in python should be able to efficiently use
common machine learning frameworks, like Keras, TensorFlow and PyTorch. Two python-based packages that
can read acoustic raw data are available. Pyecholab  has support for low level reading of acoustic data, and
echopype  that supports net cdf exports and zarr data files, that are a cloud friendly format. There is also a
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possibility to write python-based API’s on top of the LSSS pre-processing code.

For implementation in Kongsberg and IMR’s data processing pipeline, it is recommended to set up docker
images for the different models and adhering to the input and output data models. A first version of a docker
image for the preprocessor and the U-net classifier have been developed  That way, we can deploy the different
models at a range of different platforms, both in the cloud and on platforms that are collecting data.

8
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3 - The hackaton

3.1 - Objectives
To follow up on the recommendations from the one-day workshop, we set up a hackaton with the following
objectives:

Objective 1: Learn how to read (and understand) acoustic data from single beam echosounders

The COGMAR and CRIMAC teams consists of people with skills across a wide range of fields, including
fisheries acoustics, machine learning, statistics, etc, and the first objective was to get people familiar with the
field of fisheries acoustics and to get hands on experience in reading and processing data. We use python as
the language since most ML frameworks have good API’s in python.

Objective 2. Code a pipeline from .raw to a gridded format

The first step in a processing pipeline ( Figure 5 ) is to read the data and cast it into a format that can be read by
modern machine learning libraries. An important part of this process is to provide input to the standardization
process in ICES. The objective was to discuss how to best prepare the data for the ML framework. These
objectives do not cover the full pipeline, and that will be the topic for future workshops.

 

Figure 5. The suggested workflow. The black boxes indicates a data model and the orange rectangles denotes a processing step.

 

3.2 - Questions that you have had on acoustic data from echosounders, but never
dared to ask
One of the main objectives was to bring participants with backgrounds in computer science up to speed on
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fisheries acoustics. To address this objective, we asked the participants after the symposium to list things that
they did not understand or that were unclear. The following is a summary of answers to frequently asked
questions that arose in this process.

3.2.1 - What is in the raw data?

The raw data from the split beam multi-frequency echo sounders (EK60) provide sampled backscattered energy
together with athwartship (sideways) and alongship angles for each time step (ping). The angles are calculated
by the phase difference between quadrants on the transducer face. The sampling rate and maximum range may
vary between individual transducers, and may change between pings, and ping rate may vary over a survey
transect. Data from individual pings may be missing due to intermittent system failures. As a result, the raw data
will in general not fit directly to a time-range array. There are different ways of reading these data into python
(Figure 6).

The EK80 split beam broadband echosounder has a continuous wave (CW, similar to EK60 but with higher
sample rates) and a frequency modulated (FM) mode. The raw data from the EK80 in FM mode provides four
channels of complex numbers, where each channel is from one quadrant of the transducer. The complex
number denotes samples and the phase of the signal for each quadrant. In CW mode, these data can be
processed to obtain data that correspond to the EK60 format, i.e. sv by range and angles from the phase
differences between the channels. Note that the sample frequency is higher than for the EK60, but the data is
still limited by the pulse length and remains similar. In FM mode, a chirp pulse is transmitted. This is a tone that
change in frequency by time, and different sweeps can be configured. This also provides raw backscatter in four
channels, but these data can be passed on to FFT algorithms to resolve the frequency domain. The data can be
converted to a time-range-frequency grid per frequency channel after using the FFT.

The .raw files used by both EK60 and EK80 contains sequences of objects, referred to as ‘datagrams’. Each
datagram starts with a length in bytes, the type (four ASCII letters, the last a digit signifying version), timestamp
(two integers, alternatively, one long integer), the contents, and finally the length again as a sanity check. An
EK60 file starts with a CON0 configuration datagram, followed by RAW0 datagrams each containing signal from
one ping and one transducer/frequency. EK80 uses XML for configuration, and has an assorted number of new
types (e.g. separate MRU datatype for heave/pitch/roll).
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Figure 6. Different python/matlab packages tested for reading and regridding the data. Green lines are working software. The
echopype package generates the zarr data but does not regrid data in cases where there are different pulse lengths between
channels. The pyEcholab chain does not generate gridded data. The COGMAR chain works but relies on matlab functions that can
only read EK60 data.

 

3.3 - Reading EK80
3.3.1 - Comparing EK80 readers between ESP3, pyecholab and LSSS

We tested different readers to see if there are differences in the initial data processing. An initial test showed
some discrepancies ( Figure 7 ).
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Figure 7. Comparison of Sv values from a single ping from ESP3, pyEcholab and LSSS.

 

The subgroup kicked off by installing and getting familiar with the pyEcholab package and LSSS. There were
differences between the packages, and it seems like ESP3 and pyEcholab interpret the data incorrectly, and
likely contain (some of) the same processing errors.

The background material for looking into this is the documentation of the EK80 interface .

An EK80 file with data collected in broadband mode (38, 70, 120, 200 kHz) and narrowband (18, 333 kHz) was
selected as a demo data set for testing. This file was collected with GO Sars during the first CRIMAC cruise.
The file was selected as it’s reasonably small and collected using the latest version of the EK80 software (Nov
2020). Ping number 15 was selected for initial comparison of Sv from LSSS and pyEcholab. The first 1000
samples show some discrepancies between LSSS and pyEcholab ( Figure 8 ).

 

9
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Figure 8. Comparison of the first 1000 samples of the demo file as read by LSSS and pyEcholab. (get_samples in Python) and
pyEcholab (get_Sv).

 

The complex values from the EK80 files were read per sector by LSSS and pyEcholab, allowing for a step by
step process to identify discrepancies. The Raw complex values ( Figure 9 ), as read by pyecholab corresponds
to LSSS and seems ok. A systematic comparison of the LSSS implementation and the pyEcholab code
(EK80.py) was then performed, and in the following analysis three discrepancies were found in calculations of
pulse compressed Sv compared to Simrads description on how to calculate pulse compressed Sv:

1. pyEcholab uses gain at the nominal frequency. This should be at the centre frequency.

2. pyEcholab uses psi at the nominal frequency. This should be at the centre frequency.

3. \tau_eff uses the signal, and not the autocorrelated signal.
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Figure 9. The first 100 samples from the real (left panel) and complex (right panel) values from quadrant 1.

 

By applying these three changes to the pyEcholab code base, the results from LSSS and pyecholab are similar
( Figure 10 ). The modification was implemented in an “ad hoc” manner for the Hackaton, and needs a proper
implementation, reading the relevant values from the raw file. The most recent update of the pyEcholab
package have adopted these changes.
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Figure 10. (left panel) Side-by-side comparison between and (right panel) difference between LSSS and pyEcholab after modifying
pyecholab.

 

In addition there are two differences between LSSS and pyEcholab, which are not errors but more conventions
to be agreed upon:

1. Should negative range values be plotted? LSSS keeps all data while pyEcholab only keeps positive
values

2. pyEcholab : range=max(1,range), LSSS: range=max(sampleDistance, range)

 

 

3.4 - A ML friendly convention for echosounder data
Multifrequency echosounder data are stored in arrays per frequency, but machine learning libraries typically
work on tensors. There has been an effort within ICES to move forward with a standardized format, and this part
of the workshop reviewed the proposed standard for raw and processed echsounder data and provided input to
the ICES process.

3.4.1 - The COGMAR “Echogram” class

The COGMAR project used the Sand eel survey as a test case and developed a ML friendly proprietary data
format for the raw files and the label files from LSSS. Each pair of .raw and associated label is in this context
called an “echogram”. This is a working processing pipeline and serve as a starting point for the discussion. The
intention is to adapt this pipeline to the new format. The converted data from each raw file (echogram) are
stored in separate directories ( Table 1 ).

The echogram class regrid the data into a tensor based on the grid for the 38kHz channel. Although the different
frequencies are stored as separate files, they are aligned in ping and time.

Table 1. The individual files from one pair of work and raw files.
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 File name File
type

Data
structure

Data
type

Description

Acoustic
data

data_for_freq_18 .dat array(y,
x)

float Echogram data interpolated onto a (range, time) grid, common for all
frequencies. Not heave corrected. Stored as numpy.memmap.

data_for_freq_38 .dat array(y,
x)

float

data_for_freq_70 .dat array(y,
x)

float

data_for_freq_120 .dat array(y,
x)

float

data_for_freq_200 .dat array(y,
x)

float

data_for_freq_333 .dat array(y,
x)

float

Labels labels .dat array(y,
x)

int Species index mask. Heave corrected. Stored as numpy memmap.

labels_heave .dat array(y,
x)

int Species index mask. Not heave corrected. Stored as numpy.memmap.

Utility
data

objects .pkl list(dict) * *See description.

range_vector .pkl array(y) float Vertical distance to ship.

time_vector .pkl array(x) float Time stamp for each ping.

heave .pkl array(x) float Relative ship altitude above mean sea level.

depths .pkl array(x, f) float Vertical distance to seabed for each frequency. Seems to be heave
corrected.

seabed .npy array(x) int Vertical distance to seabed (in-house estimate from acoustic data).

Metadata shape .pkl tuple(2) int Shape of range-time grid.

frequencies .pkl array(f) int Available frequencies.

data_dtype .pkl - str Data type of the acoustic data.

label_dtype .pkl - str Data type of the label masks.

*objects.pkl contains a list of schools. Each school is a dictionary where:

indexes: (list) Echogram indices for the school

bounding_box: (list) Echogram indices for bounding box corner coordinates for the school

fish_type_index: (int) Species index for the school

n_pixels: (int) Echogram pixel count for the school

labeled_as_segmentation: (bool) False if ‘indexes’ is a rectangle, True else

We have defined a python class “Echogram” that can be called to create an echogram object for any
echograms. Calling the Echogram class, an echogram object is initiated with convenient attributes (e.g. the
echogram’s name, shape, range_vector, time_vector, schools, heave, etc.).

Each echogram object has methods for reading the acoustic data and labels. These data are read from memory
map files (numpy.memmap), which enables reading patches of the data without loading the entire file into
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memory. This allows for efficient data loading, e.g. for training neural nets on small echogram patches. Each
echogram object is also equipped with a method for plotting the acoustic data, labels, classifier predictions, etc.

The class and data files are highly efficient when training CNNs, but splits the data into “echograms” that has no
physical meaning other than the file size set for storing the data. The question is if we can define a format that
are equally efficient, store one survey as one continuous “echogram”, and follow the ICES standard.

3.4.2 - Preprocessing

The raw data is organized as a data from individual pings, but the data can be cast into a regular time-range-
frequency grid without any regridding if the ping and pulse lengths are similar.

In some cases, the data sets have a different resolution in time and range. This prevents us from casting the
data into a time-range-frequency array. Discrepancies in time may be caused by ping dropouts from some
transducers, or, if sequential pinging between echosounders have been used, different time vectors. Different
range resolutions occur when the pulse lengths are different (EK60) or different averaging intervals are used
(EK80 CW). In these cases, the data needs to be regridded to fit a tensor or the echogram class described
above.

There are indications that regridding the data may affect performance, and ideally it should be avoided to the
extent possible.

For regridding in time, our test algorithm aligned the ping in time using match_ping method of the ping_data in
pyecholab. We insert NaN’s where there are missing pings in one or more frequencies. The test implementation
fit the data onto the ping vector for the main frequency, but a better approach may be to use the union among all
the pings as the target grid for the time resolution.

For regridding in range, a first order conservative regridding should be used. This preserve the echo energy
when integrating across range. We tested the following approach. For each ping there is a source range vector
‘r_s’, the source sv_s vector, a target range ‘r_t’ coming from the “master” frequency, and the resulting target
sv_t ( Figure 11 ). The source range vector can either be of higher or lower resolution than the target range
vector. The target range vector is typically the main frequency used for the echo integration, but it can be any of
the frequencies. The mapping is a linear mapping between the source and target and the weight matrix is
sparse with most weights close to the diagonal. An example can be found here https://github.com/CRIMAC-
WP4-Machine-learning/CRIMAC-preprocessing/blob/NOH_pyech/regrid.py , but any mapping that conserve the
mass between the grids could be used and standard packages may be used for this purpose.

 

Figure 11. Converting the data from a coarser source resolution to a higher target resolution. The algorithm will work both ways.
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There are several approaches to grid the data, and each step require more pre-processing with potential data
loss. There was a thorough discussion on how much processing could be allowed before passing it onto a ML
framework. The idea is that most of these steps can be potentially better handled by the ML framework than ad
hoc decision on the pre-processing. The conclusion was to define a set of pre-processing steps, where the first
step would be lossless, followed by steps that are near-lossless, e.g. only resample in rare occasions, to more
fully gridded version where both time/distance travelled and depth/range a gridded to a uniform grid. If a
gridding operation is performed, it should also be labelled in the data. For the latter the resolution may be set
similar to the reports that goes into the ICES acoustic data vase, efficiently supporting the whole processing
pipeline.

The outcome of this discussion is documented here:

https://github.com/ices-publications/SONAR-netCDF4/issues/33

And in the following pull request:

https://github.com/ices-publications/SONAR-netCDF4/pull/34

3.4.3 - The ICES sonar-netcdf convention

After casting the data into an array/tensor, the convention needs to support storage. To learn more about the
different options, we set up some test code for writing NC fields. The echopype package can write both nc and
zarr files, but the convention needs to catch up. The objective of this sub task was to go through the steps and
write up an np array to .nc to develop the gridded group in the standard.

The test method ek2nc() writes a 3d numpy array to a netcdf4 file. The method takes three parameters:

variable : the actual 3d array with dimensions in order (time, range/bins, channels)

dims: a list of dimension variables in the same order as indicated for the “variable” parameter above

file: the filename as a text string

Gradually the method will be extended to comply with the Sonar-NetCDF standard. Since the parameters to the
implemented method do not contain metadata information, this must be supplied manually. After a preliminary
comparison between the information content of the EK80 object in Python and the Sonar-NetCDF convention, it
seems that part of the data will always have to be provided manually, unless the PyEchoLab package can be
updated to draw the information from the raw files. This would be part of a strategy where the ek2nc method
receives an EK80 object, possible regridding is done inside the method, and all the meta-information is
transferred from the EK80 object to the NetCDF file.

What order should the axis be in? Local in time-space first? Time last since that may cover a full survey? See
discussion in this thread: https://github.com/ices-publications/SONAR-netCDF4/issues/33. In theory the ordering
of the dimensions, time, range/bins, and beams, can have an impact on I/O performance because a 3D array is
essentially a (preferentially contiguous) 1D (chunked) array in memory and on disk. As a result, performance of
accessing subsets along one dimension can vary with dimension, because the file pointer may have to jump
back and forth if reading along a suboptimal dimension.

Numpy use by default row major ordering of array cells in memory, like C; i.e. C-major ordering), but can also
store in column major ordering (like Fortran, Matlab and R; i.e. F-major ordering). NetCDF also uses row-major
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ordering, implying that there is a 1-1 association in the cell ordering between Python and NetCDF.

for i in ...: for j in ...: for k in ...: A[i][j][k] = .... # efficient in Python, inefficient in Fortran

In NetCDF's row-major ordering the first dimension a of an array A with dimensions (a,b,c) is the slowest and c
the fastest changing dimension. This means that, if we want to load entire water column profiles of backscatter
but only over limited periods of time, time should be the first and slowest dimension (in NetCDF terms also
called the record dimension). In classical NetCDF (< 3.6) it was mandatory to put this dimension FIRST.

As to which dimension to choose as second, several considerations need to be taken into account.

We may cut off part of the profiles that are under a bottom (for instance if a technician is not paying attention
during a survey to adjust the transducer ranges over the continental slope). But to do this we have to look at
the data first, which implies that we have to load it (or at least one channel). Subsetting along the beam range
is in theory quicker if the beam dimension is chosen as the second dimension.

We may decide to use only a subset of channels, in which case we can optimize by putting the channel
dimension second.

NetCDF uses chunking. Chunks are smaller units of data that can be at random position in a file and that are
optimally accessed. Chunking and chunk caching (~ keeping in memory what is regularly used) are features
that are by default taken care of by the NetCDF software layer. Chunk size and layout are determined based on
the sizes of the fixed dimensions. This makes a decision on the order of the fixed dimensions less urgent.
Optimizing chunking for one type of data access is likely to worsen other types of data access. It may also be
worthwhile to consider how the data is used in Python.

In this early stage, the implemented function (github) to write an Numpy array to NetCDF requires the unlimited
time dimension to be the first, followed by the range/bin dimension, and the channel dimension.

This needs to be aligned with the data standard.

3.4.4 - Fitting EK80 FM data into the gridded structure

The EK80 raw format stores the raw sample data and allows for more processing. The volume backscattering
(or Target Strength) compressed over the operational frequency band at each sample can directly follow the
proposed structure of EK60 and EK80 CW.

Volume backscattering (or Target Strength) as a function of frequency (frequency index m) requires additional
processing, which is not implemented in echoPype. There are also choices made in the processing that have
implications (e.g. length/distance of the FFT window). There are a few possibilities to do this.

Converting complex data to sv at centre frequency. This is the simplest option, but it does not take advantage
of the extra information in the FM data.

Converting complex data to sv at multiple frequency bands. This will extract some of the information in the
FM data. The result will look as multiple CW frequencies.

Converting complex data to continuous sv(f) (or TS(f)) for ranges of samples. But how should the sample
ranges be chosen? This could be done for the samples of a single target (fish), or for the depth range of a
school.

Using the complex sample data directly in the machine learning step. This could also need all the meta-data
used for converting to sv, such as pulse duration, transmit power, calibration data, etc.
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This question has been raised for ICES, and the discussion can be found here: https://github.com/ices-
publications/SONAR-netCDF4/issues/33#issuecomment-745347642

3.4.5 - Converting NC data to memmaps

The echogram class used in the COGMAR project currently relies on the data being stored as numpy memory
maps (see section above). This file format allows the user to read only a small part of a large file, without
loading the entire array into memory. The netCDF files will need to be interfaced with the echogram class for the
COGMAR pipeline to work.

One option is to convert the data from the netCDF to the COGMAR files. A conversion script can easily be
created, using the netCDF4 python package, to read the relevant parts of the netCDF files. This will be a simple
first solution to extend the pipeline to other surveys being prepared in the netCDF format.

Another option is to rewrite the echogram class and read the netCDF files directly during training. The echogram
class is used to repeatedly fetch small subsets (contiguous ping-range patches) of the echogram for the training
of a neural network. The netCDF allows subsetting, but the access speed must be evaluated. To avoid slowing
down the training, this task needs to run quickly and be memory efficient. Instead of using the netCDF4 python
package, the xarray python package seems to be a better option. This option needs to be tested.

Being integrated with Dask, xarray allows computations on a dataset similarly to a numpy memory map, i.e.
there is no need to load the entire array into memory in order to access a subset. The array is divided into
smaller chunks, where the shape of the chunks is determined by the user. Selected chunks may be loaded into
memory in an explicit conversion step. The chunk shape may be selected so that it matches the patch size
currently used in the training of the neural network. The patch selection could be rewritten so that only one
chunk is loaded when selecting a patch. Alternatively, the patch selection may be kept as is, as loading multiple
chunks into memory should not affect the performance much.

An example of Xarray-way of chunked read a NetCDF4 file can be found here:
https://github.com/iambaim/crimac-hackathon/blob/main/nctomap.ipynb (notebook) or
https://github.com/iambaim/crimac-hackathon/blob/main/nctomap.py (Python code).
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4 - Concluding remarks
There are several tasks that needs attention on a shorter and longer time scale:

A data convention for preprocessing and gridding the acoustic data is needed
Regridding should be avoided if possible, but is needed in cases where pulse lengths are set different (CW)
The convention for preprocessing FM data needs to be developed
The preprocessed data should be directly usable by the deep learning frameworks
There is a need to address data provenance throughout the processing pipelines
There is a need to develop a standard for annotations
Existing ML models should be interfaced to the the standard
Build further processing algorithms should be built on to of the standard

Both the COGMAR project and CRIMAC will follow up on these recommendations, and contribute to the
international processes aiming at developing a common community standard for these instruments:
https://github.com/ices-publications/SONAR-netCDF4
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